A normal distribution for tensor-valued random variables to analyze diffusion tensor MRI data

نویسندگان

  • Peter J. Basser
  • Sinisa Pajevic
چکیده

Diffusion Tensor MRI (DT-MRI) provides a statistical estimate of a symmetric 2 nd -order diffusion tensor, D, for each voxel within an imaging volume. We propose a new normal distribution, p(D) ~ exp(1/2 D:A:D), for a tensor random variable, D. The scalar invariant, D:A:D, is the contraction of a positive definite symmetric 4 th -order precision tensor, A , and D. A formal correspondence is established between D:A:D and the elastic strain energy density function in continuum mechanics. We show that A can then be classified according to different classical elastic symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar symmetry, and anisotropy). When A is an isotropic tensor, an explicit expression for p(D), and for the distribution of its three eigenvalues, p( 1, 2, 3) , are derived, which are confirmed by Monte Carlo simulations. Sample estimates of A are also obtained using synthetic DT-MRI data. Estimates of p(D) should be useful in feature extraction and in classification of noisy, discrete tensor data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI

We propose a novel spectral decomposition of a 4th-order covariance tensor, S. Just as the variability of vector (i.e., a 1st-order tensor)-valued random variable is characterized by a covariance matrix (i.e., a 2nd-order tensor), S, the variability of a 2nd-order tensor-valued random variable, D, is characterized by a 4th-order covariance tensor, S. Accordingly, just as the spectral decomposit...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002